For the love of the ride inside and out

IMPROVING
 YOUR POWER

WORK /THEORY ON PROFILES BY DR. COGGAN

WORK /THEORY ON
 PROFILES BY DR. COGGAN

dueation	moximum ava Pow	
	(Wisk)	\%
5 seconds	15.75	35\%
1 minute	8.4	43\%
5 minutes	5.50	5\%
60 minutes	5.16	70\%

Time Trialist

WORK /THEORY ON PROFILES BY DR. COGGAN

Time Trialist

Sprinter

WORK /THEORY ON PROFILES BY DR. COGGAN

Rider	Timo Tralls (male)	
	Div. 3 Professional, "strong time trali	
duration	muxmmmaga powz	
	(Whog)	\%
5 seconds	15.75	35\%
1 minute	8.4	43\%
5 minutes	5.50	5\%\%
60 minutes	5.16	70\%

Time Trialist

RIDER	Sppintra (mate)	
	Cat 3 roadie with "amazing spint"	
dueation	meximumava power	
	(Whk)	\%
5 seconds	19.90	68\%
1 minute	8.29	41\%
5 minues	4.05	27\%
60 minutes	3.69	35\%

The "Shape" of the graph shows

Sprinter

performance
relative to
world record
holders.

WORK /THEORY ON PROFILES BY DR. COGGAN

RIDER	Time Tralls (mat)	
	Div. 3 Protessional, "strong time tralist"	
dusation	muximmang. Power	
	(W14g)	\%
5 seconds	15.75	35\%
1 minute	8.4	43\%
5 minutes	5.50	57\%
60 minutes	5.16	70\%

Time

Sprinter

Trialist

The "Shape" of the graph shows
performance

CYCHEUSION

WORK /THEORY ON PROFILES BY DR. COGGAN

RIDER	Time Tralls (mial)	
	Div. 3 Professional, "strong time tralist"	
duration	maximumava powzr	
	(Whag)	\%
5 seconds	15.75	35\%
1 minute	8.4	43\%
5 minutes	5.50	57\%
60 minutes	5.16	70\%

Time Trialist

The "Shape" Sprinter
 of the graph shows
performance

cychedion

(i) ${ }^{1}$ ICI/PROORO
© Copyright 2010, Cycling Fusion

POWER PROFILES

POWER PROFILES

- In Power Training, the amount of power each individual can generate is quite variable, and these three separate time intervals reflect this variability and the different muscle development that comes into play.

POWER PROFILES

- In Power Training, the amount of power each individual can generate is quite variable, and these three separate time intervals reflect this variability and the different muscle development that comes into play.
- Endurance Riders - will look for their numbers in the Sustainable Power zone to be the strongest

POWER PROFILES

- In Power Training, the amount of power each individual can generate is quite variable, and these three separate time intervals reflect this variability and the different muscle development that comes into play.
- Endurance Riders - will look for their numbers in the Sustainable Power zone to be the strongest
- Climbers - will want their 3 and 5 minute power to be the strongest

POWER PROFILES

- In Power Training, the amount of power each individual can generate is quite variable, and these three separate time intervals reflect this variability and the different muscle development that comes into play.
- Endurance Riders - will look for their numbers in the Sustainable Power zone to be the strongest
- Climbers - will want their 3 and 5 minute power to be the strongest
- Sprinters - will need their I minute power to be on fire

POWER PROFILES

- In Power Training, the amount of power each individual can generate is quite variable, and these three separate time intervals reflect this variability and the different muscle development that comes into play.
- Endurance Riders - will look for their numbers in the Sustainable Power zone to be the strongest
- Climbers - will want their 3 and 5 minute power to be the strongest
- Sprinters - will need their I minute power to be on fire
- Generalists - will look for respectable numbers all around cyctusion

CYCLING FUSION POWER PROFILES

CYCLING FUSION POWER PROFILES

Dr.Andy Coggan's original work with
Training Peaks showing power relative to World Record Holders

CYCLING FUSION POWER PROFILES

Watts per pound provides a different "shape" to the graph (using the same data).

This may be easier to remember.

Dr.Andy Coggan's original work with
Training Peaks showing power relative to World Record Holders

CYCLING FUSION POWER PROFILES

Dr.Andy Coggan's original work with
Training Peaks showing power relative to World Record Holders

Watts per pound provides a different "shape" to the graph (using the same data).

This may be easier to remember.
Watts Per Pound

© Copyright 2010, Cycling Fusion

POWER PROFILE ENDURANCE RIDER

POWER PROFILE ENDURANCE RIDER

Cycling Fusion Intervals
Hypothetical Endurance Rider Watts Watts/Lb World Class Percent Weight in Lbs $\mathbf{1 m}$ 320 2.00 5.22 38.34% 3 m 288 1.80 5.22 34.51% 5 m 272 1.70 3.45 49.31% $\mathbf{2 0 m}$ 256 1.60 2.76 58.02%

POWER PROFILE ENDURANCE RIDER

Cycling
Fusion
Intervals

Hypothetical Endurance Rider Watts Watts/Lb	World Class	Percent	Weight in Lbs		
$\mathbf{1 m}$	320	2.00	5.22	38.34%	
3 m	288	1.80	5.22	34.51%	
5 m	272	1.70	3.45	49.31%	
$\mathbf{2 0 m}$	256	1.60	2.76	58.02%	

Watts/Lb for an Endurance Rider will reflect a much smaller range of power across all zones.

POWER PROFILE ENDURANCE RIDER

Cycling Fusion Intervals	Raw Watts Watts/Lb		World Class	Percent	Weight in Lbs
Hypothetical En	ndurance				160
1 m	320	2.00	5.22	38.34\%	
3 m	288	1.80	5.22	34.51\%	
5 m	272	1.70	3.45	49.31\%	
20m	256	1.60	2.76	58.02\%	

Watts/Lb for an Endurance Rider will reflect a much smaller range of power across all zones.

Watts per pound provides an easy way to set goals for improving a weakness, or becoming strong in one type of discipline or style of riding.

POWER PROFILE ENDURANCE RIDER

Cycling
Fusion
Intervals

Hypothetical Endurance Rider Watts Watts/Lb	World Class	Percent	Weight in Lbs		
$\mathbf{1 m}$	320	2.00	5.22	38.34%	
3 m	288	1.80	5.22	34.51%	
5 m	272	1.70	3.45	49.31%	
$\mathbf{2 0 m}$	256	1.60	2.76	58.02%	

Watts/Lb for an Endurance Rider will reflect a much smaller range of power across all zones.

Watts per pound provides an easy way to set goals for improving a weakness, or becoming strong in one type of discipline or style of riding.

Endurance Rider

© Copyright 2010, Cycling Fusion

POWER PROFILE CLIMBER

POWER PROFILE CLIMBER

Cycling Fusion Intervals	Raw Watts	Watts/Lb	World Class	Percent	Weight in Lbs
Hypothetical Climber					160
1 m	634	2.40	5.22	46.01\%	
3 m	488	2.30	5.22	44.09\%	
5 m	342	1.90	3.45	55.12\%	
20m	265	1.30	2.76	47.14\%	

POWER PROFILE CLIMBER

Cycling Fusion Intervals	Raw Watts	Watts/Lb	World Class	Percent	Weight in Lbs
Hypothetical Climber					160
1 m	634	2.40	5.22	46.01\%	
3 m	488	2.30	5.22	44.09\%	
5 m	342	1.90	3.45	55.12\%	
20m	265	1.30	2.76	47.14\%	

Watts/Lb for an Climber will reflect big jumps in power for the shorter efforts of 3 to 5 minutes, while longer efforts will generally show only modest Watts

POWER PROFILE CLIMBER

Cycling Fusion Intervals	Raw Watts	Watts/Lb	World Class	Percent	Weight in Lbs
Hypothetical Climber					160
1 m	634	2.40	5.22	46.01\%	
3 m	488	2.30	5.22	44.09\%	
5 m	342	1.90	3.45	55.12\%	
20m	265	1.30	2.76	47.14\%	

Notice a wider range of variation between 20 minute efforts and Climbing Power here

Watts/Lb for an Climber will reflect big jumps in power for the shorter efforts of 3 to 5 minutes, while longer efforts will generally show only modest Watts

POWER PROFILE CLIMBER

Cycling Fusion Intervals	Raw Watts	Watts/Lb	World Class	Percent	Weight in Lbs
Hypothetical Climber					160
1 m	634	2.40	5.22	46.01\%	
3 m	488	2.30	5.22	44.09\%	
5 m	342	1.90	3.45	55.12\%	
20m	265	1.30	2.76	47.14\%	

Watts/Lb for an Climber will reflect big jumps in power for the shorter efforts of 3 to 5 minutes, while longer efforts will generally show only modest Watts

Notice a wider range of variation between 20 minute efforts and Climbing Power here

Climber

ICI/PRC
© Copyright 2010, Cycling Fusion

POWER PROFILE SPRINTER

POWER PROFILE SPRINTER

Cycling Fusion Intervals	Raw Watts	Watts/Lb	World Class	Percent	Weigh tin Lbs
Hypothetical Sprinter					160
1 m	634	2.90	5.22	55.59\%	
3 m	488	2.30	5.22	44.09\%	
5 m	342	1.50	3.45	43.51\%	
20m	265	1.30	2.76	47.14\%	

POWER PROFILE SPRINTER

Cycling Fusion Intervals	Raw Watts	Watts/Lb	World Class	Percent	Weigh tin Lbs
Hypothetical Sprinter					160
1 m	634	2.90	5.22	55.59\%	
3 m	488	2.30	5.22	44.09\%	
5 m	342	1.50	3.45	43.51\%	
20m	265	1.30	2.76	47.14\%	

Watts/Lb for an Sprinter will reflect a huge jump in Wattage generation in the I minute and shorter category. These efforts are recruiting fast twitch muscles in mass and quickly.

POWER PROFILE SPRINTER

Cycling Fusion Intervals	Raw Watts	Watts/Lb	World Class	Percent	Weigh t in Lbs
Hypothetical Sprinter					160
1m	634	2.90	5.22	55.59\%	
3 m	488	2.30	5.22	44.09\%	
5 m	342	1.50	3.45	43.51\%	
20m	265	1.30	2.76	47.14\%	

The steepness of the graph really gives this rider's profile away. This is what it takes to win races; explosive power.

Watts/Lb for an Sprinter will reflect a huge jump in Wattage generation in the I minute and shorter category. These efforts are recruiting fast twitch muscles in mass and quickly.

POWER PROFILE SPRINTER

Cycling Fusion Intervals	Raw Watts	Watts/Lb	World Class	Percent	Weigh t in Lbs
Hypothetical Sprinter					160
1m	634	2.90	5.22	55.59\%	
3 m	488	2.30	5.22	44.09\%	
5 m	342	1.50	3.45	43.51\%	
20m	265	1.30	2.76	47.14\%	

Watts/Lb for an Sprinter will reflect a huge jump in Wattage generation in the I minute and shorter category. These efforts are recruiting fast twitch muscles in mass and quickly.

POWER PROFILE THE GENERALIST

POWER PROFILE THE GENERALIST

Cycling Fusion Intervals	Raw Watts	Watts/Lb	World Class	Percent	$\begin{aligned} & \text { Weigh } \\ & \text { t in } \\ & \text { Lbs } \end{aligned}$
Hypothetical Generalist					160
1 m	634	2.10	5.22	40.26\%	
3 m	488	2.00	5.22	38.34\%	
5 m	342	1.70	3.45	49.31\%	
20m	265	1.50	2.76	54.39\%	

POWER PROFILE THE GENERALIST

Cycling Fusion Intervals	Raw Watts	Watts/Lb	World Class	Percent	Weigh tin Lbs
Hypothetical Generalist					160
1 m	634	2.10	5.22	40.26\%	
3 m	488	2.00	5.22	38.34\%	
5 m	342	1.70	3.45	49.31\%	
20m	265	1.50	2.76	54.39\%	

There are those riders who do not excel in any one Power Zone, but can post decent numbers in each one respectively.

They are well rounded as a rider, but not specialized or exceptional in any one power zone.

POWER PROFILE THE GENERALIST

Cycling Fusion Intervals	Raw Watts	Watts/Lb	World Class	Percent	Weigh tin Lbs
Hypothetical Generalist					160
1 m	634	2.10	5.22	40.26\%	
3 m	488	2.00	5.22	38.34\%	
5 m	342	1.70	3.45	49.31\%	
20m	265	1.50	2.76	54.39\%	

There are those riders who do not excel in any one Power Zone, but can post decent numbers in each one respectively.

They are well rounded as a rider, but not specialized or exceptional in any one power zone.

While not as dramatic a range of power as with
the Sprinter, this graph demonstrates a good base
in each individual Power Zone, meaning the rider
While not as dramatic a range of power as with
the Sprinter, this graph demonstrates a good base
in each individual Power Zone, meaning the rider
While not as dramatic a range of power as with
the Sprinter, this graph demonstrates a good base
in each individual Power Zone, meaning the rider could become a threat in any event.

POWER PROFILE THE GENERALIST

Cycling Fusion Intervals	Raw Watts	Watts/Lb	World Class	Percent	$\begin{aligned} & \text { Weigh } \\ & \text { t in } \\ & \text { Lbs } \end{aligned}$
Hypothetical Generalist					160
1 m	634	2.10	5.22	40.26\%	
3 m	488	2.00	5.22	38.34\%	
5 m	342	1.70	3.45	49.31\%	
20m	265	1.50	2.76	54.39\%	

There are those riders who do not excel in any one Power Zone, but can post decent numbers in each one respectively.

They are well rounded as a rider, but not specialized or exceptional in any one power zone.

While not as dramatic a range of power as with the Sprinter, this graph demonstrates a good base in each individual Power Zone, meaning the rider could become a threat in any event.

Generalist

FRAME OF REFERENCE

FRAME OF REFERENCE
 Lance Armstrong

FRAME OF REFERENCE
 Lance Armstrong

Weight: $70 \mathrm{~kg} / 155 \mathrm{lbs}$
Height: 180 cm
Resting heart rate: 32-34
VO2ml/kg: 83.8
Max power at VO2: 600 watts

FRAME OF REFERENCE

Lance Armstrong

Weight: $70 \mathrm{~kg} / 155 \mathrm{lbs}$
Height: 180 cm
Resting heart rate: 32-34
VO2ml/kg: 83.8
Max power at VO2: 600 watts

Max power at VO2: 600 watts
Max heart rate: 201
Lactate Threshold HR: 178
Time Trial HR: 188-192
MSS 460-500 ($\mathbf{5 0 0}$ divided by $70=$ over $7 \mathbf{w} / \mathrm{kg}$ or 3.1 Watts/lb

FRAME OF REFERENCE

Lance Armstrong

Weight: $70 \mathrm{~kg} / 155 \mathrm{lbs}$
Height: 180 cm
Resting heart rate: 32-34 VO2ml/kg: 83.8
Max power at VO2: 600 watts

Max power at VO2: 600 watts
Max heart rate: 201
Lactate Threshold HR: 178
Time Trial HR: 188-192
MSS 460-500 (500 divided by $70=$ over $7 \mathbf{w} / \mathrm{kg}$ or 3.1 Watts/lb

| Power Output to Weight (Watts per Kg) at Lactate Threshold (from Saris Group) | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Race Category Level | Watts/Kg (W) | Watts/Lb (W) | Watts/Kg (M) | Watts/Lb (M) | Kg to Lb factor |
| USCF Category 4-5 | 2.5 to 3.0 | 1.1 to 1.4 | 3.0 to 3.5 | 1.4 to 1.6 | 0.45359237 |
| USCF Category 2-3 | 3.0 to 3.5 | 1.4 to 1.6 | 4.0 to 4.5 | 1.8 to 2.0 | |
| US Domestic Professional | 3.5 to 4.0 | 1.6 to 1.8 | 4.5 to 5.0 | 2.0 to 2.3 | |
| Successful Pro Tour Pro | 4.0 to 4.5 | 1.8 to 2.0 | 5.0 to 5.5 | 2.3 to 2.5 | |

Taken From The Saris Group: http://wnw.saris.com/wattscalculator.aspx

IMPROVING YOUR POWER

- IfYou Can Measure It, You Can Improve It
- IfYou Can Measure It, You Can Improve It
- Raise Your Limiters
- IfYou Can Measure It, You Can Improve It
- Raise Your Limiters
- V02, Lactate Threshold
- IfYou Can Measure It, You Can Improve It
- Raise Your Limiters
- V02, Lactate Threshold
- Managing Training Load - The Key To Raising Limiters

IMPROVING YOUR POWER

- IfYou Can Measure It, You Can Improve It
- Raise Your Limiters
- V02, Lactate Threshold
- Managing Training Load - The Key To Raising Limiters
- Metabolic Load;Your Body's Response To Power Generation

IMPROVING YOUR POWER

- IfYou Can Measure It, You Can Improve It
- Raise Your Limiters
- V02, Lactate Threshold
- Managing Training Load - The Key To Raising Limiters
- Metabolic Load;Your Body's Response To Power Generation
- Foundation Established, High Zone Riding Is Next

TRAINING LOAD

TRAINING LOAD

- Metabolic Load: Your body's response to Power generation
- Training Load must measure both volume (time), frequency (times per wk) and intensity (how hard you train)

TRAINING LOAD

- Metabolic Load: Your body's response to Power generation
- Training Load must measure both volume (time), frequency (times per wk) and intensity (how hard you train)

Training Load	Heart Zones®				
	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5
	1	2	3	4	5

HOW MUCH TIME PER ZONE

HOW MUCH TIME PER ZONE

- An experienced coach should be able to provide \% of time per zone per period of development
- Think periodization - base building specificity
- Increase time in higher zones as base is established

HOW MUCH TIME PER ZONE

- An experienced coach should be able to provide \% of time per zone per period of development
- Think periodization - base building \longrightarrow specificity
- Increase time in higher zones as base is established

HOW MUCH TIME PER ZONE

- An experienced coach should be able to provide \% of time per zone per period of development
- Think periodization - base building \longrightarrow specificity
- Increase time in higher zones as base is established

Training Load	Heart Zones®				
	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5
	1	2	3	4	5

IMPROVING YOUR POWER

- Specificity: Specific Training Yields Specific Results
- Specificity: Specific Training Yields Specific Results
-What's Your Power Profile?
- Specificity: Specific Training Yields Specific Results
- What's Your Power Profile?
- Power Improvements for Racing
- Specificity: Specific Training Yields Specific Results
- What's Your Power Profile?
- Power Improvements for Racing
- Power Improvements for Charity Rides, etc

IMPROVING YOUR POWER

- Specificity: Specific Training Yields Specific Results
- What's Your Power Profile?
- Power Improvements for Racing
- Power Improvements for Charity Rides, etc
- Understand the Power to Weight Ratio

IMPROVING YOUR POWER

- Specificity: Specific Training Yields Specific Results
- What's Your Power Profile?
- Power Improvements for Racing
- Power Improvements for Charity Rides, etc
- Understand the Power to Weight Ratio
- Speed \& Power Chart

	3\%	4\%	5\%	6	7\%	8\%	9\%	10\%		\%			\%			18\%	19\%	20\%
4.0	0.3	0.3	0.4	0	0.6	0.7	0.8	0.9	1.0	1.0	1.1	1.2	1.3	1.4	1.5	1.	1.7	1.7
5.0	0.3	0.4	0.5	0.	0.8	0.9	1.0	1.1	1.2	1.3	1.	1.5	1.6	1.	1.9	2.0	2.1	2.2
6.0	0.4	0.5	0.7					1.3	1.4	1.6	1	1.8	2.	2.	2.2	2.	2.5	2.6
7.0	0.	0.6	0.8				1.4	1.5	1.7	1.8	2.		2.3	2.4	2.6	2.8	2.9	3.1
8.0	0.	0.7	0.9		1.2	1.4	1.	1.	1.9	2.1	2.3	2.4	2.6	2.8	3.0	3.1	3.3	3.5
9.0	0.6	0	1.0			1.6	1	2	2	2.4	2	2.8	3.	3.1	3.	3.	3.	3.9
10.0	0.7	0	1.1	1.3	1.5	1.7	2.0	2.2	2.4	2.6	2.8	3.	3.3	3.5	3.7	3.9	4.2	4.4
11.0	0.7	1.0	1.2		1.7	1.9	2.2	2.4	2.6	2.9	3.	3.	3.6	3.8	4.1	4.3	4.6	4.8
12	0.8	1.0	1.3		1.	2.1		2.6	2.9	3.1	3.4	3.7	3.	4.2	4.5	4.7	5.0	5.2
	0.9	1.1	1.4		2.	2.3	2.	2.8	3.1	3.4	3.7	4.0	4.	4.5	4.8	5.1	5.4	5.7
	0.9	1.2	1.5	1	2.1	2.4	2.8	3.1	3.4	3.7	4.0	4.	4.	4.	5.2	5.5	5.8	6.1
15.0	1.0	1.3	1.	2	2	2.6	3.0	3.3	3.6	3.9	4.3	4.6	4.9	5.2	5.6	5.9	6.2	6.6
	1.0	1.	1	2.		2.8		3.5	3.8	4.2	4.	4.	5.2	5.6	5.9	6.3	6.6	7.0
17	1.1	1.5	1.9	2.	2.6	3.0	3.	3.7	4.	4.5	4.	5.2	5.6	5.9	6.3	6.7	7.1	7.4
18.0	1.2	1.6	2.0	2.4	2.8	3.	3.5	3.9	4.3	4.7	5.1	5.5	5.9	6.3	6.7	7.1	7.5	7.9
19	1.2	1.7	2.1	2.5	2.9	3.3	3.7	4.2	4.6	5.0	5.4	5.8	6.2	6.6	7.1	7.5	7.9	8.3
20.0	1.3	1.7	2.2	2.6	3.1	3.5	3.9	4.4	4.8	5.2	5.7	6.1	6.6	7.0	7.4	7.9	8.3	8.7
	Y Love O	The Ri								$\frac{58}{\text { xis }}$								

© Copyright 2010, Cycling Fusion

IMPROVEMENTS FOR RACING

IMPROVEMENTS FOR RACING

- A race is not a race is not a race; Road, MTB, Cross, Down Hill, etc,

IMPROVEMENTS FOR RACING

- A race is not a race is not a race; Road, MTB, Cross, Down Hill, etc,
- The types of courses can be short, long, flat, lots of climbing, etc.

IMPROVEMENTS FOR RACING

- A race is not a race is not a race; Road, MTB, Cross, Down Hill, etc,
- The types of courses can be short, long, flat, lots of climbing, etc.
- Each competitor must evaluate the needs of each race or category

IMPROVEMENTS FOR RACING

- A race is not a race is not a race; Road, MTB, Cross, Down Hill, etc,
- The types of courses can be short, long, flat, lots of climbing, etc.
- Each competitor must evaluate the needs of each race or category
- Speed required to win, be in contention, or at least be competitive.

IMPROVEMENTS FOR RIDING

- If nearly 100% flat, or grades of 3 to 4 percent at most, there is very little Power training needed

IMPROVEMENTS FOR RIDING

- If nearly 100% flat, or grades of 3 to 4 percent at most, there is very little Power training needed
- What is needed in this case is simply endurance for the length of time you will be on the bike.

IMPROVEMENTS FOR RIDING

- If nearly 100% flat, or grades of 3 to 4 percent at most, there is very little Power training needed
- What is needed in this case is simply endurance for the length of time you will be on the bike.
- However, for climbing hills you need to know what is required to prevent dismounting

IMPROVEMENTS FOR RIDING

- If nearly 100% flat, or grades of 3 to 4 percent at most, there is very little Power training needed
- What is needed in this case is simply endurance for the length of time you will be on the bike.
- However, for climbing hills you need to know what is required to prevent dismounting
- The ability to ride (not push) an entire event provides the feeling of strength and accomplishment you are looking for

IMPROVEMENTS FOR RIDING

- If nearly 100% flat, or grades of 3 to 4 percent at most, there is very little Power training needed
- What is needed in this case is simply endurance for the length of time you will be on the bike.
- However, for climbing hills you need to know what is required to prevent dismounting
- The ability to ride (not push) an entire event provides the feeling of strength and accomplishment you are looking for
- Use the same tool the racer uses; the Speed and Power Chart.

EXAMPLE: RACE OR RIDE

The Pittsburgh Dirty Dozen Cimbs							
CMCDS	This hill's Grade Ranges	Avg. Grade	Range of Watts/Lb Req	Average Watts/Lb	Miles	Time in Min.	Vertical Feet
Center Ave	8\% to 19%	8.7\%	. 9 to 2.1	1.1	0.84	10.1	386
Garmin	5\% to 16%	as done on 9/19/10 during training:			0.73	8:11	5.5 mph
Ravine St.	6\% to 18\%	11.7\%	. 7 to 2.0	1.3	0.65	7.8	397
Garmin	10\% to 18%	as done on 9/19/10 during training:			0.67	8.5	4.7 mph
Berry Hill Rd.	15\% to 27%	17.9\%	1.6 to 3.0	2.0	0.19	2.3	183
Garmin	11.5\% to 26\%	as done on 9/19/10 during training:			0.21	3.3	3.8 mph
High St.	6\% to 20\%	13.5\%	. 7 to 2.2	1.5	0.24	2.9	171
Garmin	3\% to 16\%	as done on 9/19/10 during training:			0.37	4.7	4.7 mph

READY FOR POWER WORK

READY FOR POWER WORK

- Finally Ready For Stress \& Adaptation

READY FOR POWER WORK

- Finally Ready For Stress \& Adaptation
- Establish a Baseline In The Zone of Interest

READY FOR POWER WORK

- Finally Ready For Stress \& Adaptation
- Establish a Baseline In The Zone of Interest
- Drills vs Tests
- Drill slightly under and slightly over established MSP
- Drill no more than 2 to 3 times per week
- Drill using same format or similar to test protocols
- Test no more than once every 2 weeks

ICI/PRO
© Copyright 2010, Cycling Fusion

POWERTESTS

POWERTESTS

- Sustainable Power $=2 \times 20$ (two efforts 20 min each)

POWERTESTS

- Sustainable Power $=2 \times 20$ (two efforts 20 min each)
- Climbing Power $=3 \times 5$, or 3×3

POWERTESTS

- Sustainable Power $=2 \times 20$ (two efforts 20 min each)
- Climbing Power $=3 \times 5$, or 3×3
- Explosive Power $=3 \times \mathrm{I}$, three times

POWERTESTS

- Sustainable Power $=2 \times 20$ (two efforts 20 min each)
- Climbing Power $=3 \times 5$, or 3×3
- Explosive Power $=3 \times \mathrm{I}$, three times
- All tests above must be averaged

POWERTESTS

- Sustainable Power $=2 \times 20$ (two efforts 20 min each)
- Climbing Power $=3 \times 5$, or 3×3
- Explosive Power $=3 \times \mathrm{I}$, three times
- All tests above must be averaged
- Make sure to "lap" HR monitors, and reset power meters

INTERPRETING POWERTESTS

INTERPRETING POWERTESTS

- Not possible without a Heart Monitor - your window into the "cost" of each watt of power.

INTERPRETING POWERTESTS

- Not possible without a Heart Monitor - your window into the "cost" of each watt of power.
- Always wear one, there are no exceptions when it comes to power workouts. You lose too much valuable information in the process

INTERPRETING POWERTESTS

- Not possible without a Heart Monitor - your window into the "cost" of each watt of power.
- Always wear one, there are no exceptions when it comes to power workouts. You lose too much valuable information in the process
- If you hit Threshold less than 50% into the test, you have probably over-reached, but try to hold it

INTERPRETING POWERTESTS

- Not possible without a Heart Monitor - your window into the "cost" of each watt of power.
- Always wear one, there are no exceptions when it comes to power workouts. You lose too much valuable information in the process
- If you hit Threshold less than 50% into the test, you have probably over-reached, but try to hold it
- If you hit Threshold less than 25% into the test, you have simply picked the wrong power target, abort the test

INTERPRETING POWERTESTS

INTERPRETING POWER TESTS

- If you don't hit Threshold until the final I 0% of the test, you may have "left something on the table"

INTERPRETING POWER TESTS

- If you don't hit Threshold until the final IO\% of the test, you may have "left something on the table"
- If you don't hit Threshold at all during the test - what were you thinking, stop being a weenie and add some watts

INTERPRETING POWERTESTS

- If you don't hit Threshold until the final IO\% of the test, you may have "left something on the table"
- If you don't hit Threshold at all during the test - what were you thinking, stop being a weenie and add some watts
-RECORD YOUR DATA!

INTERPRETING POWERTESTS

- If you don't hit Threshold until the final IO\% of the test, you may have "left something on the table"
- If you don't hit Threshold at all during the test - what were you thinking, stop being a weenie and add some watts
- RECORD YOUR DATA!
- Study cadence and gear/resistance combinations to find your "Sweet spot" for RPMs at each power zone

INTERPRETING POWERTESTS

- If you don't hit Threshold until the final IO\% of the test, you may have "left something on the table"
- If you don't hit Threshold at all during the test - what were you thinking, stop being a weenie and add some watts
- RECORD YOUR DATA!
- Study cadence and gear/resistance combinations to find your "Sweet spot" for RPMs at each power zone
- Look for related aspects to better power generation days

PAPER LOGS, SPREADSHEETS...

PAPER LOGS, SPREADSHEETS...

TAG Publishing

Paper Logs

ICI/PRO
© Copyright 2010, Cycling Fusion

PAPER LOGS, SPREADSHEETS...

TAG Publishing

HOME JOURNAL VERSIONS	FRONT COVER TEMPLATES	BACK COVER TEMPLATES	GET STARTED NOW
Journal Versions Click on the images to view larger versions. Order Now Pricing Guide			
VERSION 1: Fitness \& Nutrition Journal			
90 Days Workout Log 90 Days Nutrition Log Progress Chart Annual Workout Record Food Composition Guide Heart Rate Zone Training Guide			
VERSION 2: Workout \& Diet Journal			
90 Days Workout Log 90 Days Nutrition Log Progress Chart Annual Workout Record Food Composition Guide Heart Rate Zone Training Guide		=-	

Paper Logs

Spreadsheet

crackusion												
Training Load Progress	Wk1	Wk 2	Wk 3	Wk 4	Wk 5	Wk 6	Wk 7	Wk 8	Wk9	Wk 10	Wk 11	Wk 12
Emil	751	401	599	531	765	785	326	?			1,100	
		-47\%	49\%	-11\%	44\%	3\%	-58\%	4	4	4	4	-100\%
Lisa	685	740	850	700	929	914	987	915	348	1,040		1,539
		8\%	15\%	-18\%	33\%	-2\%	8\%	-7\%	-62\%	14\%	-100\%	48\%
Victor	865	867	838	863	239	405	977	1,030	1060			
		0\%	-3\%	3\%	-72\%	69\%	141\%	5\%	3\%	-100\%	\triangle	4
Steve	600	647	671	690	1138	720	750	780	463			
		8\%	4\%	3\%	65\%	-37\%	-34\%	4\%	-41\%	-100\%	\triangle	4
Terri	496	549	558	596	643	674	722	762	822	878	1,045	1,336
		11\%	2\%	7\%	8\%	5\%	7\%	6\%	8\%	7\%	19\%	28\%
Denise			305	10,117	?	?	?	823		869	977	
		4	4	3,217\%	-	4	4	\triangle	-100\%	\triangle	12\%	-100\%
Lisa 2	514	533	561	574	617	640	678	712	756	774	816	859
		4\%	5\%	2\%	7\%	4\%	6\%	5\%	6\%	2\%	5\%	5\%
Paul	914	953	1,079	1,095	1134	584	1,142	1,209	1251			
		4\%	13\%	1\%	4\%	-49\%	1\%	6\%	3\%	-100\%	$\stackrel{4}{4}$	4
Tom	297	561	348	522	115	627	309	520	391			
		89\%	-38\%	50\%	-78\%	445\%	-51\%	-17\%	-25\%	-100\%	4	4
Chris	4,741	743	771	814	850	885	415	933	1005	1,056	1,108	1,170
		-84\%	4\%	6\%	4\%	4\%	-53\%	5\%	8\%	5\%	5\%	6\%
Jason	957	1,013	1,121	1,112	1174	776	579	1,156	1,397			
		6\%	11\%	-1\%	6\%	-34\%	-25\%	100\%	21\%	-100\%	4	4
Nina	889	857	927	948	1001	496	1,038	1,086	1063	1,214	1,204	1,298
		-4\%	8\%	2\%	6\%	-50\%	4\%	5\%	-2\%	14\%	-1\%	8\%
Jodi	566	405	926	543	676	382	?	?	?			
		-28\%	129\%	-41\%	24\%	-43\%	4	4	4	\wedge	\wedge	\wedge

WEB SOFTWARE...

WEB SOFTWARE...

P/FitnessJournal

Tuesday, Oct 5, 2010

WEB SOFTWARE...

Web Software

Web Software
The Ultimate Training \& Nutrition Sotware
Username: \square Password: \square SO) Sign Up Free Θ

Routes | Find | Home | Personal | Professional | Plans | wKO+ | Blog | Support | Search |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

AND NOW MOBILE DEVICES, SO THERE ARE NO EXCUSES

AND NOW MOBILE DEVICES, SOTHERE ARE NO EXCUSES

iPhone Screenshots

iPhone / iPod Applications

AND NOW MOBILE DEVICES, SO THERE ARE NO EXCUSES

iPhone Screenshots

iPhone / iPod Applications

SNEAK PEAK OF INDOOR CYCLING SPECIFIC APPS

SNEAK PEAK OF INDOOR CYCLING SPECIFIC APPS

SNEAK PEAK OF INDOOR CYCLING SPECIFIC APPS

Indoor \& Outdoor Cycling Progress

Tightly Integrated with Indoor Equipment

SNEAK PEAK OF INDOOR CYCLING SPECIFIC APPS

Indoor \& Outdoor Cycling Progress

Tightly Integrated with Indoor Equipment

Instructor Application

BRINGING INDOOR AND OUTDOOR CYCLING TOGETHER

